Multilayer FPC

  • Multilayer Flex PCB Layers Proofing Bending and High Temperature Resistant Ultra-thin Soft Cable Manufacturer
Multilayer Flex PCB Layers Proofing Bending and High Temperature Resistant Ultra-thin Soft Cable Manufacturer

Multilayer Flex PCB Layers Proofing Bending and High Temperature Resistant Ultra-thin Soft Cable Manufacturer

Multilayer Flex PCB Layers Proofing Bending and High Temperature Resistant Ultra-thin Soft Cable Manufacturer


PCB Parameter:


PCB Type: 6 layer FPC flex

Board Thickness :0.2+/-0.03mm

Brand:Oneseine

Line Width and Line Spacing : 0.14mm/0.11mm

Tolerance :+0.03mm

Surface Treatment :ENIG(Au  3uin,  Ni   120uin)


The Benefits of Flexible Printed Circuit Boards


Flexible PCBs are lightweight, so they can be efficiently integrated into electronic components without increasing their size.

Flexible PCBs are known to dissipate heat efficiently.

Flexible PCBs are easy to assemble and require less time and cost.

Flexible PCBs have flexible substrates, making them ideal for assembling tiny electronic parts.

The use of FPC can greatly reduce the size of electronic products, in line with the development of electronic products to the direction of high density, miniaturization, and high reliability.


Definition of Flexible Printed Circuit Boards


A Rigid flexible printed circuit board also called a soft board or a flex PCB, is made of a flexible insulating material circuit board. Its biggest feature is flexibility, able to bend and rotate freely.

Flexible printed circuit board selection of insulation substrate commonly used there are two: polyimide(PI) or polyester(PET) film. Oneseine is a trusted flex PCB manufacturer with 16 years of experience for all these flexible circuit material.. 

Polyimide is an organic polymer material with excellent comprehensive performance, with high-temperature resistance up to 400°C and high thermal stability and flexibility. Polyimide flex PCB material is the most widely used flex PCB material, such as smartphone, wearable devices, automotive electronics, cameras, automation, robotics, medical, aerospace, military electronics etc. Besides, because of it higher temperature resistance, PI flex PCB material can be used in the dielectric substrate of solar cells and LED lamps and lanterns. The lamps and lanterns will generate a lot of heat under long-term high-temperature conditions, and only the flex circuit can work normally for a long time.

Polyester film is also a kind of high polymer material, with good mechanical and thermal stability, but cheaper cost than polyimide(PI) material. It is widely used in consumer electronics and and automotive industry.


Oneseine with 15 years of professional technical experience-


With over 16 years of experience manufacturing flexible PCBs for the automotive industry, oneseine is proud to provide high-quality, reliable solutions for battery protection circuit boards.

Our 2-layer flexible PCB is specially designed for automotive new energy applications, providing a durable and efficient solution for battery protection. Our flexible PCBs are made of high-quality materials such as PI, copper and adhesives to meet the needs of automotive use. A plate thickness of 0.25mm +/- 0.03mm ensures a strong, reliable construction, while a minimum hole size of 0.1mm ensures precision and accuracy in assembly.

Our flexible PCBs are designed with 0.2mm/0.25mm line width and space to provide superior performance and functionality. ENIG 2-3uin's surface treatment provides a corrosion-resistant surface ensuring long-lasting durability and reliability in automotive applications. With a tolerance of ±0.1mm, our flexible PCBs are guaranteed to meet the exact specifications and requirements of your battery protection circuit board.

At oneseine, we understand the critical importance of quality and reliability in automotive applications. That’s why our Automotive New Energy 2-Layer Flexible PCB – Battery Protection Circuit Board is engineered to meet the highest performance and durability standards. With our extensive experience in manufacturing flexible PCBs for the automotive industry, we have the technical expertise and knowledge to provide high-quality products that meet the unique needs of new energy applications.

Whether you are looking for solutions for electric vehicles, hybrid vehicles, or other new energy vehicle applications, Oneseine's 2-layer flex PCBs are ideal for your battery protection circuit board needs. Our commitment to excellence and innovation ensures you will receive quality products that meet and exceed your expectations.

Oneseine is a brand you can trust when it comes to manufacturing flexible PCBs for automotive new energy applications. Our dedication to quality, reliability and technical excellence has made us an industry leader. With our 2-layer flexible PCB for automotive new energy – battery protection circuit board, you can be confident in the performance and durability of your battery protection system.

Choose Oneseine for your flexible PCB needs and experience the difference our expertise and commitment to quality make. Contact us today to learn more about our 2-layer flexible PCB – battery protection circuit board for automotive new energy and learn how we can meet your unique specifications and requirements.


Rigid flexible Circuit Board PCB Fabrication Process:


1. Cutting: Cutting of hard board base material: Cut a large area of copper-clad board into the size required by the design.

2. Cutting the flexible board base material: Cut the original roll material (base material, pure glue, covering film, PI reinforcement, etc.) into the size required by the engineering design.

3. Drilling: Drill through holes for circuit connections.

4. Black hole: Use potion to make the toner adhere to the hole wall, which plays a good role in connection and conduction.

5. Copper plating: Plate a layer of copper in the hole to achieve conduction.

6. Alignment exposure: Align the film (negative) under the corresponding hole position where the dry film has been pasted to ensure that the film pattern can correctly overlap with the board surface. The film pattern is transferred to the dry film on the board surface through the principle of light imaging.

7. Development: Use potassium carbonate or sodium carbonate to develop the dry film in the unexposed areas of the circuit pattern, leaving the dry film pattern in the exposed area.

8. Etching: After the circuit pattern is developed, the exposed area of the copper surface is etched away by the etching solution, leaving the pattern covered by the dry film.

9. AOI: Automatic optical inspection. Through the principle of optical reflection, the image is transmitted to the equipment for processing, and compared with the set data, the open and short circuit problems of the line are detected.

10. Lamination: Cover the copper foil circuit with an upper protective film to prevent circuit oxidation or short circuit, and at the same time function as insulation and product bending.

11. Laminating CV: Press the pre-laminated covering film and reinforced plate into a whole through high temperature and high pressure.

12. Punch: Use the mold and the power of the mechanical punch to punch the work plate into the shipping size that meets the customer's production requirements.

13. Lamination (superposition of rigid-flex pcb boards)

14. Pressing: Under vacuum conditions, the product is gradually heated, and the soft board and hard board are pressed together through hot pressing.

15. Secondary drilling: Drill the via hole connecting the soft board and the hard board.

16. Plasma cleaning: Use plasma to achieve effects that conventional cleaning methods cannot achieve.

17. Immersed copper (hard board): A layer of copper is plated in the hole to achieve conduction.

18. Copper plating (hard board): Use electroplating to thicken the thickness of hole copper and surface copper.

19. Circuit (dry film): Paste a layer of photosensitive material on the surface of the copper-plated plate to serve as a film for pattern transfer. Etching AOI wiring: Etching away all the copper surface except the circuit pattern, etching out the required pattern.

20. Solder mask (silk screen): Cover all lines and copper surfaces to protect the lines and insulate.

21. Solder mask (exposure): The ink undergoes photopolymerization, and the ink in the screen printing area remains on the board surface and solidifies.

22. Laser uncovering: Use a laser cutting machine to perform a specific degree of laser cutting on the position of the rigid-flex junction lines, peel off theflexible board part, and expose the soft board part.

23. Assembly: Paste steel sheets or reinforcements on the corresponding areas of the board surface to bond and increase the hardness of important parts of the FPC.

24. Test: Use probes to test whether there are open/short circuit defects to ensure product functionality.

25. Characters: Print marking symbols on the board to facilitate the assembly and identification of subsequent products.

26. Gong plate: Use CNC machine tools to mill out the required shape according to customer requirements.

27. FQC: The finished products will be fully inspected for appearance according to customer requirements, and defective products will be picked out to ensure product quality.

28. Packaging: The boards that have passed the full inspection will be packed according to customer requirements and shipped to the warehouse

工艺插图.jpg


Oneseine Flexible PCB & Rigid-Flex PCB Process  Capability


CategoryProcess CapabilityCategoryProcess Capability
Production Type

Single layer FPC / Double layers FPC

Multi-layer FPC / Aluminum PCBs

Rigid-Flex PCB

Layers Number1-30 layers FPC

2-32 layers Rigid-FlexPCB                

1-60 layers Rigid PCB

HDI Boards

Max Manufacture Size

Single layer FPC 4000mm

Double layers FPC 1200mm

Multi-layers FPC 750mm

Rigid-Flex PCB 750mm

Insulating Layer

Thickness

27.5um /37.5/ 50um /65/ 75um / 100um /

125um / 150um

Board Thickness

FPC 0.06mm - 0.4mm

Rigid-Flex PCB 0.25 - 6.0mm

Tolerance of PTH

Size

±0.075mm
Surface Finish

Immersion Gold/Immersion

Silver/Gold Plating/Tin Plating/OSP

StiffenerFR4 / PI / PET / SUS / PSA/Alu
Semicircle Orifice SizeMin 0.4mmMin Line Space/ width0.045mm/0.045mm
Thickness Tolerance±0.03mmImpedance50Ω-120Ω
Copper Foil Thickness

9um/12um / 18um / 35um

 70um/100um

Impedance

Controlled

Tolerance

±10%

Tolerance of NPTH

Size

±0.05mmThe Min Flush Width0.80mm
Min Via Hole0.1mmImplement

Standard

GB / IPC-650 / IPC-6012 / IPC-6013II /

IPC-6013III


软板图片(1)放大.jpg

公司组合3.jpg

Contact Us

Contact: Flexible PCB

Phone: 0086 18682010757

E-mail: kico@oneseine.com

Add: B area,101 Buliding,No12,Fushan 2th Road,Doumen,Zhuhai,China